
30 BETTER SOFTWARE MAY 2007 www.StickyMinds.com

by Dan North

G
ET
TY
 IM

A
G
ES

by Dan North

www.StickyMinds.com MAY 2007 BETTER SOFTWARE 31

During the past few years, service-ori-

ented architecture (SOA) has become

a mainstream approach for designing and de-

veloping enterprise software. As with most new

technologies, the adoption of SOA has been led

by software vendors and shaped by their partic-

ular tools and sales targets. Naturally it is in the

vendors’ interest to emphasize the complexity of

SOA and then provide a timely and profitable

solution.

This leads many systems architects into a tech-

nology-centric view of SOA, when, in fact, the

most important criteria for a service-oriented

architect—before tackling the technology—

should be a keen understanding of the business.

request form, puts it in the internal
mail, and gets back to work. A cou-
ple of days later an envelope drops
into Bob’s inbox. His vacation has
been approved—great news!—now
to book the hotel and tell the wife
and kids.

Replay the
Scenario in
Service-oriented
Terms

Now, let’s replay this scenario and
identify where services are being used
and what the interactions look like.

In SOA terms, the personnel depart-
ment is a service provider. One of its
services is scheduling annual leave. Bob is
a client or consumer of the service. The
vacation request form describes a service
contract. The filled-in form is then an
asynchronous message—Bob doesn’t sus-
pend his activities waiting for the reply to
come back; instead he gets on with his
regular work.

The internal mail is a message trans-
port—an unreliable one in this instance.
Luckily, Bob has an error-handling pro-
tocol, namely a timeout. After a week,
his calendar alerts him to call the person-
nel department. The telephone call is a
synchronous interaction—he is on the
telephone in real time. He then imple-
ments an error-correcting strategy, which
is to resend the message. Notice that the
whole sequence—the reminder on the
calendar, the timeout, the telephone call,
and resending the message—was only
necessary because the message transport
was unreliable. We’ll return to this idea
later.

A second asynchronous message is
sent, and this time Bob receives a re-
sponse in his inbox. This is an
asynchronous response. Finally, Bob cor-
relates the response with the original
request, and the exchange is complete.

Use the Business-
based Scenario
to Explore
Service-oriented
Assumptions

Unless you are an SOA veteran, the
technical terms in the previous section
may be unfamiliar to you. However, they
have a direct, one-to-one relationship

exist yet. You can use a telephone and the
internal mail but nothing else. Here is
how the scenario might go:

Bob Books a Vacation
Bob works for Big Corporation,

Inc. Bob wants to take a vacation.
He’s been working hard, and he
thinks he deserves it. So Bob goes to
the stationery shelf, takes an annual
leave request form, and diligently
fills it in. It’s quite a basic form—he
fills in his name, his department, the
dates he wants to take off, and then
he signs the form. For good measure,
he writes his telephone extension on
the bottom of the form. He takes the
form to his line manager, who coun-
tersigns it, and then he puts it in the
internal mail. Oh, the internal mail!
It’s notoriously unreliable, but he
sends off the form anyway and of-
fers up a silent prayer. He puts a
note on his desk calendar to remind

him to follow up in a week.
Then he gets back to work on his

important administrative job.
A week later, Bob’s calendar re-

minds him that he hasn’t heard back
from the personnel department, so
he decides to phone them.

Bob who? No, we don’t have a
leave request for you. Yes, of course
I’d know—I handle all the leave re-
quests. Sorry!

Undeterred, Bob fills out another

This article presents a simple, technol-
ogy-agnostic approach to designing and
evolving SOAs. You will not see
acronyms such as WSDL, SOAP, or
REST, and I promise not to use technical
terms like “orchestration,” “realization,”
and “governance.” Because of this, you
will be able to design and implement
service-oriented architectures that truly
serve your business.

Describe a
Scenario in
Business Terms

Imagine you want to implement a va-
cation-booking service as part of an
enterprise system. The first step is to re-
move any reference to computers or
modern technology. This will allow you
to concentrate on the business objectives
of the service, without getting sidetracked
by technological considerations. In other
words, it enables you to separate the
“what” from the “how.”

A simple way to do this is to describe
the business interactions as they would
have occurred in a 1950s company. Let’s
call our company Big Corporation, Inc.
It’s a classic 1950s corporation—hierar-
chical, with myriad departments
containing countless people who are cogs
in the Big machine. They all know their
places, their job functions are clearly de-
fined, and there are no messy
organizational boundaries. Remember,
the job title “project manager” doesn’t

32 BETTER SOFTWARE MAY 2007 www.StickyMinds.com

year. It may increase or decrease at week-
ends or monthends, or it may be
seasonal. In our example, vacations are
cyclical, with winter and summer peaks.
We should determine if the service is in-
ternational, in which case winter and
summer may occur at different times for
different users. This may figure in our

discussions around correlating the asyn-
chronous responses.

AVAILABILITY OF SERVICE
Related to the idea of peak usage is

the more general conversation concern-
ing availability of service. Should we
provide a service level agreement (SLA)
that promises how quickly the service
will respond under various circum-
stances? If not, can we assure consumers
what they can expect from our service?
Can we guarantee it?

Should we prioritize some services
over others, and if so, how? For instance,
if the personnel department also books
business travel, it might process all busi-
ness travel before any vacation bookings.
Alternatively, it could guarantee to pro-
vide a certain percentage of its capacity
to each type of request.

SECURITY AND COMPLIANCE
In this example, security probably is

not an issue. It is unlikely that someone
would want to fake a vacation request on
Bob’s behalf. However, what do we

rules. What if Bob already has used up
his allowance or this request would take
him over his limit? What if the manager
who signed the form isn’t authorized to
sign vacation requests? In these cases, we
might want to send a response back to
Bob explaining why we can’t process his
request.

CORRELATING RESPONSES
Bob’s response arrives some time after

he sent the original request, and he has
been busy doing other things in the
meantime, so he has to be able to corre-
late the response with his request. Of
course, this is easy because he only has
one outstanding vacation request. If he
were sending and receiving a lot of the
same types of requests, all asynchronous-
ly, he would need a more robust
approach to correlating the responses as
they come in, such as a reference number
to match against.

Similarly, if there were many people
sending in vacation requests at the same
time, the internal mail system might need
some help to avoid becoming over-
whelmed and thus delivering responses to
the wrong inboxes or losing them entire-
ly.

It is useful to understand the expected
usage patterns of the service in terms of
peaks and valleys and the maximum
amount of concurrent usage. This may
vary by time of day, week, month, or

with the terms in the business version,
which has the advantage of being real
and tangible.

Using the previous example, here are
some discussions and questions that will
help clarify the assumptions your archi-
tects might make about defining the
service:

RELIABILITY OF MESSAGE TRANSPORT
We discover from the description that

the message-delivery system—the inter-
nal mail—is unreliable. Is this something
over which we have any control? Could
we make it more reliable or even replace
it altogether? If not, what are the con-
straints under which we are working,
and what level of service can we expect?

ERROR-HANDLING STRATEGY
The scenario doesn’t describe how the

first message is lost. Was it never deliv-
ered to the service, or did it go missing
after it arrived at the personnel depart-
ment? In the latter case, there may be
more error conditions to consider. For
example, if someone updates Bob’s
records to reduce the number of leave
days remaining but the request goes miss-
ing before the vacation has been
approved, his records are in an inconsis-
tent state. The records won’t reflect
reality—the personnel department has
“lost” some of Bob’s vacation time. In
other words, the vacation-booking serv-
ice has to be transactional. It is similar to
the situation in which you debit one ac-
count and credit another—either both
actions must succeed or both must be un-
done.

There is a clue in the telephone con-
versation. It seems there is only one
person who deals with vacation requests,
so it is less likely that she will lose the re-
quest partway through than if several
people were involved in the process. This
is a feature of the implementation of the
service: The more complex it is, the more
we need to consider transaction bound-
aries and the ramifications of failures in
different parts of the process.

The errors we have discussed so far
depend on how the request is performed
(i.e., how it is implemented). But there
are several business reasons why a vaca-
tion request might fail. In SOA terms
these are known as semantics or business

www.StickyMinds.com MAY 2007 BETTER SOFTWARE 33

effective immediately.
So she creates a new form, version

3, and sends out an all-company
memo saying that, regretfully, ver-
sions 1 and 2 will no longer be
accepted. She also drafts a standard
response to send to anyone who
submits any of the old-style forms.

Replay the
Scenario in
Service-oriented
Terms

Replaying this scenario, we see the
service evolve twice, and for different rea-
sons. In the first instance, we realize we
can provide an enhanced service if the re-
quest has some additional data. We
publish a second version of the service
contract—the blank form with the op-
tional field added.

Notice that we didn’t withdraw all the
version 1 forms. We still can provide a
service to clients using the old version of
the service contract. All that happens is
that we gracefully degrade the service be-
cause we can’t call the requester if there
are any problems. This allows clients to
choose when to upgrade to the new serv-
ice contract and get the new features and
provides loose coupling between upgrad-
ing the service and the clients.

This is the most common form of
service evolution. Either through feed-
back from your users or ideas from your
own organization or your competitors,
you will want to add new functionality or
improvements to your services.

BE RESPONSIBLE WHEN MAKING A
CHANGE THAT BREAKS EXISTING CLIENTS

The second situation is somewhat dif-
ferent. A new, mandatory piece of data is
required, without which the service can-
not be implemented. This means that no
consumers can use the service with their
existing service contract and everyone
has to “upgrade” to the new form. Be-
cause we are responsible service
designers, we provide an error response
rather than silently discarding any out-
dated requests. This strategy of providing
immediate feedback to the consumer is
known as “failing fast.”

It is useful because the client now can
see exactly why the request failed (and
will continue failing until he upgrades his

34 BETTER SOFTWARE MAY 2007 www.StickyMinds.com

tecture, but we also want to be able to
change and adapt services over time. To
understand the issues involved here, it is
useful to look at why a service might
evolve. Again, we start with a business-
focused scenario and then map it into
SOA terminology.

Susie Saves the Day
Susie works in the personnel de-

partment of Big Corporation, Inc.
processing the vacation requests.
One day she receives a vacation re-
quest from Bob, so she looks up his
remaining leave allowance and dis-
covers he doesn’t have enough days
left. She notices that the vacation is
imminent—he wants to leave in two
days. By the time the response gets
back to him and he resubmits the re-
quest, it will be too late. She notices
that he has scribbled his telephone
extension on the bottom of the
form, so she calls him.

Hey Bob, Susie from personnel
here. I’m afraid I have to turn down
your request for three weeks’ vaca-
tion; you don’t have enough days
left.

Three weeks? I only meant to
book two weeks! What dates do you
have on that form?

The 1st through the 21st.
Oh gee, sorry, that should say 1st

through 14th. I must have been dis-
tracted. I’m reading this article
about the flying cars we’ll all have in
the year 2000.

Never mind. I’ll approve this;
you enjoy your vacation.

Thanks, Susie. You really saved
the day!

Over time she notices more and
more people writing their phone
numbers on the form, so she is able
to resolve problems more quickly.

She decides to add a new, option-
al field on the form for the extension
number and calls the form “Vaca-
tion Request Form version 2.”

Some time later, she receives a
memo about a new management di-
rective. Apparently all vacation
requests now have to contain the
name of the person who will be in
charge in the vacationer’s absence.
No exceptions, those are the rules,

know about Bob himself? Perhaps his
boss turned down his request, and Bob
forged his manager’s signature. This
might be more likely if it were left to the
manager to track Bob’s vacation al-
lowance rather than the personnel
department. In this case, we might con-
sider a more careful verification of the
request, such as a (synchronous) tele-
phone call to Bob’s manager to ensure
that she really had signed the request.

In addition to our own business rules,
we must consider external legal con-
straints that may be imposed on us. This
is particularly true in systems that main-
tain sensitive financial or personal
information.

SOME OBSERVATIONS
As you can see, we have been able to

ask some useful questions, which are
helping us understand the nature of the
service without descending into techno-
logical discussions or becoming
distracted by implementation details.
Keeping the discussion at a business level
enables us to understand the true busi-
ness value and intent of the service and
allows us to investigate any business
complexity independent of technical is-
sues.

In fact, a true service-oriented archi-
tecture should only have services with a
direct counterpart in the business; other-
wise they cannot possibly be modeling a
business process. Abstract technical con-
cepts, such as a “data service” or a
“replication service,” don’t make any
sense in business terms. (There may be
shared modules or libraries to provide
common technical functionality, but
these should not be implemented or re-
ferred to as services.)

A useful heuristic is to equate a serv-
ice provider with a department or team
within the organization. For instance, we
might model the personnel department as
a single service provider offering a num-
ber of services, or we might partition it
into smaller service providers if the serv-
ices naturally fall into categories.

Evolve the
Service in
Business Terms

So far we have only talked about the
initial design of a service-oriented archi-

case, it is specifically tailored for their
own purposes.

The service contract is then expressed
in terms of enterprise-level business con-
cepts, such as a vacation or a dispatch or
a sales order, which again decouples the
service consumer from the service
provider and allows them to evolve inde-
pendently, while still able to communicate
in a common language.

The mistake that enterprise informa-
tion architects (or people with similarly
named roles) make is trying to define
what the business concept means to each
of the people using it.

Summary
The metaphor of a 1950s cor-
poration allows us to define

and discuss complex business interactions
in terms of a service-oriented architecture,
while protecting us from the issues of im-
plementation details, tools, and products.
By keeping the discussion focused on real
business scenarios and away from tech-
nology, the business is able to play a
useful and important role in identifying
the requirements of an SOA.

Clearly, this is only the first step to im-
plementing a fully working SOA for the
problem at hand, and immediately fol-
lowing this exercise you would dive into
the details of how to implement a solu-
tion to the specific problem. What it
means, though, is that at any point the
technical decisions can be mapped back
to identifiable business value in terms of
the business process we are trying to
model. {end}

Dan North is a senior consultant with
ThoughtWorks, where he coaches devel-
opment teams in agile software delivery
and project automation. A programmer
with fifteen years of delivery experience,
he has published a number of articles and
spoken at conferences on topics ranging
from agile enablement to NLP. Dan
thanks Arjen Poutsma, Mats Helander,
and his colleagues at ThoughtWorks for
their help with this article. You can contact
Dan at dan.north@thoughtworks.com.

DO:
1. HAVE A USER (!)

2. PASS AROUND FORMS AND DOCU-
MENTS, NOT OBJECTS (OR
REPRESENTATIONS OF OBJECTS)

3. REMEMBER THAT CALLING ACROSS

THE NETWORK TAKES TIME

4. USE COARSE-GRAINED SERVICES

RATHER THAN A LOT OF LITTLE

CALLS

DON’T:
1. DESIGN FOR WHAT YOU DON’T

NEED

2. “PHONE HOME,” I.E., DON’T MAKE

SERVICE CALLS TO THINGS THAT

ARE AVAILABLE LOCALLY

3. CREATE A SERVICE IF YOU ONLY

HAVE ONE CLIENT

4. EXPOSE YOUR PRIVATES!

5. HAVE TRANSACTIONS ACROSS

MULTIPLE SERVICE CALLS

www.StickyMinds.com MAY 2007 BETTER SOFTWARE 35

request format). Otherwise he could as-
sume the failure was due to some
infrastructure issue or temporary service
outage and just keep trying.

However carefully you try to evolve a
service, a sudden step change can occur,
especially in heavily regulated environ-
ments where the regulators are outside of
your control.

AVOID A UNIVERSAL DOMAIN MODEL
Before we leave Big Corporation, Inc.,

there is one more analogy we can draw
from the scenarios. It involves under-
standing the models that Bob and Susie
have in their heads. When Bob thinks
about a vacation, he might be imagining
palm trees, activities for the kids, long
walks on the beach—vacation stuff.
When Susie thinks about a vacation, she
thinks about updating files, filling in
forms, and contacting line managers.

When they are talking to each other,
they use the common word “vacation”
but it means two totally different things.
In the former case, it refers to a period of
time away from the office; in the latter
case it refers to the business process
around booking that time.

In technology terms, each of them has
a domain model of a vacation. Increas-
ingly we are seeing organizations attempt
to introduce “enterprise information ar-
chitecture,” “universal data dictionary,”
or some other fancy term for trying to
force everyone to use the same domain
model.

In our example, it would be not only
difficult but also detrimental for Bob to
share Susie’s domain model of a vaca-
tion. As the personnel department grows,
we might want to re-engineer the busi-
ness process behind the vacation-booking
service (for instance, by scaling up Susie’s
role to be performed by several people)
which would be harder to achieve if it
were coupled to Bob’s (and everyone
else’s) understanding of a vacation.

Instead, we introduce the idea of a
business concept. This is effectively the
higher-level, ubiquitous language that
ties together all of the finer-grained do-
main models behind each service. So
“vacation” becomes a business concept
that is interpreted differently by Bob and
Susie. They each have a domain model
that maps onto a vacation, but in each

• Does it really need to be avail-
able 99.999% of the time?

• This includes security, avail-
ability—in fact all the
“-ilities”

• Better still, don’t expose them
as services in the first place

• In other words, avoid putting
implementation details into the
message

• Embedded in the business (he
should not be a technical per-
son)

• Who cares about the outcome

• Instead package all the calls
into a single, coarse-grained
service call

